# Faculty of Engineering Savitribai Phule Pune University



# **Syllabus**

# of

# **Second Engineering**

# (Electronics & Computer Engineering)

# (2019 Course)

(with effect from June 2021)

### Second Year of Electronics & Computer Engineering (2020 Course)

### 210242: Engineering Mathematics -III

| <b>Teaching Scheme:</b>                      | Credit | Examination Scheme:                                     |
|----------------------------------------------|--------|---------------------------------------------------------|
| TH: 03 hrs. / week<br>TUTORIAL: 01hr. / week | 03     | In-Sem (Theory): 30 Marks<br>End Sem (Theory): 70 Marks |
|                                              |        | Term Work: 25 Marks                                     |

Course Outcomes: On completion of the course, learner will be able to –

CO1: Solve higher order linear differential equation using appropriate techniques for modeling and analyzing electrical circuits.

CO2: Solve problems related to Fourier transform, Z-transform and applications to Communication systems and Signal processing.

CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing.

CO4: Perform vector differentiation and integration, analyze the vector fields and apply to Electro-Magnetic fields.

CO5: Analyze conformal mappings, transformations and perform contour integration of complex functions in the study of electrostatics and signal processing.

# Second Year of Electronics & Computer Engineering (2020 Course)

# 210243: Electronic Circuits

| Teaching Scheme:                                                                                                                                   | Credit                    | Examination Scheme:        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|--|
|                                                                                                                                                    |                           |                            |  |
| TH: 03 hrs. / week                                                                                                                                 | 03                        | In-Sem (Theory): 30 Marks  |  |
|                                                                                                                                                    |                           | End Sem (Theory): 70 Marks |  |
| Course Outcomes: On completion                                                                                                                     | on of the course, learner | r will be able to –        |  |
|                                                                                                                                                    |                           |                            |  |
| CO1: Assimilate the physics, characteristics and parameters of MOSFET towards its application as amplifier.                                        |                           |                            |  |
| CO2: Design MOSFET amplifiers, with and without feedback, & MOSFET oscillators, for given specifications.                                          |                           |                            |  |
| CO3: Analyze and assess the performance of linear and switching regulators, with their variants, towards applications in regulated power supplies. |                           |                            |  |
| CO4: Explore and deploy basic configurations of Op-amp with negative feedback, with focus on relevant parameters.                                  |                           |                            |  |
| 205: Design, Build and test Op-amp based analog signal processing and conditioning circuits towards various real time applications.                |                           |                            |  |
| O6: Understand and compare the principles of various data conversion techniques and PLL with their applications.                                   |                           |                            |  |

Second Year of Electronics & Computer Engineering (2020 Course)

#### **210244: Digital Circuits**

| Teaching Scheme:   | Credit | Examination Scheme:        |
|--------------------|--------|----------------------------|
| TH: 03 hrs. / week | 03     | In-Sem (Theory): 30 Marks  |
|                    |        | End Sem (Theory): 70 Marks |

Course Outcomes: On completion of the course, learner will be able to -

CO1: Identify and prevent various hazards and timing problems in a digital design.

CO2: Use the basic logic gates and various reduction techniques of digital logic circuit.

CO3: Analyze, design and implement combinational logic circuits.

CO4: Analyze, design and implement sequential circuits

CO5: Differentiate between Mealy and Moore machines.

CO6: Analyze digital system design using PLD

| Savitribai Phule Pune University                                                                         |                         |                            |  |
|----------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|--|
| Second Year of Electronics & Computer Engineering (2020 Course)<br>210245: Data Structure and Algorithm  |                         |                            |  |
| Teaching Scheme:CreditExamination Scheme:                                                                |                         |                            |  |
| TH: 03 hrs. / week                                                                                       | 03                      | In-Sem (Theory): 30 Marks  |  |
|                                                                                                          |                         | End Sem (Theory): 70 Marks |  |
| Course Outcomes: On completion of                                                                        | f the course, learner w | vill be able to –          |  |
| CO1: Develop programs using C prog                                                                       | gramming language.      |                            |  |
| CO2: Implement sorting and searching algorithms and calculates it complexity. CO3:                       |                         |                            |  |
| Develop applications of stacks and queues using array.                                                   |                         |                            |  |
| CO4: Demonstrate applicability of linear data structure linked list.                                     |                         |                            |  |
| CO5: Demonstrate applicability of Non linear data structure binary tree with real time                   |                         |                            |  |
| application.                                                                                             |                         |                            |  |
| CO6: Apply the knowledge of graph for solving the problems of spanning tree and shortest path algorithm. |                         |                            |  |
|                                                                                                          |                         |                            |  |

| Savitribai Phule Pune University                                                                                 |                                                                 |                            |  |  |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------|--|--|
| Second Year of Elec                                                                                              | Second Year of Electronics & Computer Engineering (2020 Course) |                            |  |  |
| 21                                                                                                               | 10246: Compute                                                  | er Organization            |  |  |
| <b>Teaching Scheme:</b>                                                                                          | Teaching Scheme:CreditExamination Scheme:                       |                            |  |  |
| TH: 03 hrs. / week                                                                                               | 03                                                              | In-Sem (Theory): 30 Marks  |  |  |
|                                                                                                                  |                                                                 | End Sem (Theory): 70 Marks |  |  |
| Course Outcomes: On completion                                                                                   | on of the course, lea                                           | rner will be able to –     |  |  |
| CO1: Demonstrate computer architecture concepts related to design of modern processors, memories and I/Os.       |                                                                 |                            |  |  |
| CO2: Analyze the principles of computer architecture using examples drawn from commercially available computers. |                                                                 |                            |  |  |
| CO3: Evaluate various design alternatives in processor organization.                                             |                                                                 |                            |  |  |
| CO4: Explain and Use fixed point multiplication (Booth's) and division (Restoring and non-restoring) algorithms. |                                                                 |                            |  |  |
| C05: Explain the concept of Instruction pipeline, RISC, CISC.                                                    |                                                                 |                            |  |  |
| CO6: Develop control unit and Explain the concept of various I/O operations.                                     |                                                                 |                            |  |  |
|                                                                                                                  |                                                                 |                            |  |  |

| Savitribai Phule Pune University                                                                                                                                                                   |                            |                            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|--|
| Second Year of Electronics & Computer Engineering (2020 Course)                                                                                                                                    |                            |                            |  |
|                                                                                                                                                                                                    | 210342: Signals &          | & Systems                  |  |
| <b>Teaching Scheme:</b>                                                                                                                                                                            | Credit Examination Scheme: |                            |  |
| TH: 03 hrs. / week                                                                                                                                                                                 | 03                         | In-Sem (Theory): 30 Marks  |  |
| TUTORIAL: 01hr. / week                                                                                                                                                                             |                            | End Sem (Theory): 70 Marks |  |
| Course Outcomes: On completion                                                                                                                                                                     | on of the course, learne   | r will be able to –        |  |
| CO1: Identify, classify basic signals                                                                                                                                                              | and perform operations     | on signals.                |  |
| CO2: Identify, Classify the systems based on their properties in terms of input output relation and in terms of impulse response and will be able to determine the convolution between to signals. |                            |                            |  |
| CO3: Analyze and resolve the signals in frequency domain using Fourier series and Fourier Transform.                                                                                               |                            |                            |  |
| CO4: Resolve the signals in complex frequency domain using Laplace Transform, and will be able to apply and analyze the LTI systems using Laplace Transforms.                                      |                            |                            |  |
| CO5: Define and Describe the probability, random variables and random signals. Compute the probability of a given event, model, compute the CDF and PDF.                                           |                            |                            |  |
| CO6: Compute the mean, mean square, variance and standard deviation for given random variables using PDF.                                                                                          |                            |                            |  |

| Savitribai Phule Pune University                                                                                                   |                                           |                            |  |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------|--|
| Second Year of Electronics & Computer Engineering (2020 Course)                                                                    |                                           |                            |  |
| 210343: Principles of Programming Language                                                                                         |                                           |                            |  |
| <b>Teaching Scheme:</b>                                                                                                            | Teaching Scheme:CreditExamination Scheme: |                            |  |
| TH: 03 hrs. / week                                                                                                                 | 03                                        | In-Sem (Theory): 30 Marks  |  |
|                                                                                                                                    |                                           | End Sem (Theory): 70 Marks |  |
| Course Outcomes: On completion of the course, learner will be able to –                                                            |                                           |                            |  |
| CO1: To analyze the strengths and weaknesses of programming languages for effective and efficient program development.             |                                           |                            |  |
| CO2: To inculcate the principles underlying the programming languages enabling to learn new programming languages.                 |                                           |                            |  |
| CO3: To grasp different programming paradigms                                                                                      |                                           |                            |  |
| CO4: To use the programming paradigms effectively in application development.                                                      |                                           |                            |  |
| CO5: Understand Programming Structure in the form classes and methods, Inheritances, Packages and Interfacing in JAVA Programming. |                                           |                            |  |

C06: Learn and apply the knowledge of exceptional JAVA programming through managing I/O and Applet.

| Savitribai Phule Pune University<br>Second Year of Electronics & Computer Engineering (2020 Course) |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| 210345: Object Oriented Programming                                                                 |  |  |  |  |
| Teaching Scheme:CreditExamination Scheme:                                                           |  |  |  |  |
| TH: 03 hrs. / week03In-Sem (Theory): 30 Marks                                                       |  |  |  |  |
| End Sem (Theory): 70 Marks                                                                          |  |  |  |  |
| <b>Course Outcomes:</b> On completion of the course, learner will be able to –                      |  |  |  |  |
| CO1: Describe the principles of object oriented programming.                                        |  |  |  |  |
| CO2: Apply the concepts of data encapsulation, inheritance in C++.                                  |  |  |  |  |
| CO3: Understand Operator overloading and friend functions in C++.                                   |  |  |  |  |
| CO4: Apply the concepts of classes, methods inheritance and polymorphism to write programs C++.     |  |  |  |  |
| CO5: Apply Templates, Namespaces and Exception Handling concepts to write programs in C++.          |  |  |  |  |
| CO6: Describe and use of File handling in C++.                                                      |  |  |  |  |

| Savitribai Phule Pune University                                                                                                                                                  |                                                                 |                            |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------|--|--|
| Second Year of Ele                                                                                                                                                                | Second Year of Electronics & Computer Engineering (2020 Course) |                            |  |  |
| 210344: .                                                                                                                                                                         | Principles of Com                                               | numeation Systems          |  |  |
| <b>Teaching Scheme:</b>                                                                                                                                                           | Credit                                                          | Examination Scheme:        |  |  |
| TH: 03 hrs. / week                                                                                                                                                                | 03                                                              | In-Sem (Theory): 30 Marks  |  |  |
|                                                                                                                                                                                   |                                                                 | End Sem (Theory): 70 Marks |  |  |
| Course Outcomes: On completion of the course, learner will be able to –                                                                                                           |                                                                 |                            |  |  |
| CO1: To compute & compare the bandwidth and transmission power requirements by analyzing time and frequency domain spectra of signal required for modulation schemes under study. |                                                                 |                            |  |  |
| CO2: Describe and analyze the techniques of generation, transmission and reception of Amplitude Modulation Systems.                                                               |                                                                 |                            |  |  |
| CO3: Explain generation and detection of FM systems and compare with AM systems.                                                                                                  |                                                                 |                            |  |  |
| CO4: Exhibit the importance of Sampling Theorem and correlate with Pulse Modulation technique (PAM, PWM, and PPM).                                                                |                                                                 |                            |  |  |
| CO5: Characterize the quantization process and elaborate digital representation techniques (PCM, DPCM, DM and ADM).                                                               |                                                                 |                            |  |  |
| CO6: Illustrate waveform coding, multiplexing and synchronization techniques and articulate their importance in baseband digital transmission.                                    |                                                                 |                            |  |  |

#### Second Year of Electronics & Computer Engineering (2020 Course)

### 210346: System Programming & Operating Systems

| <b>Teaching Scheme:</b> | Credit | Examination Scheme:        |
|-------------------------|--------|----------------------------|
| ГН: 03 hrs. / week      | 03     | In-Sem (Theory): 30 Marks  |
|                         |        | End Sem (Theory): 70 Marks |

Course Outcomes: On completion of the course, learner will be able to -

CO1: Demonstrate the knowledge of Systems Programming and Operating Systems.

CO2: Identify the functionality of different language processing components.

- CO3: Formulate the Problem and develop the solution for same.
- CO4: Compare and analyze the different implementation approach of system programming operating system abstractions.

CO5: Analyse the various memory management techniques for timesharing & distributed systems.

CO6: Interpret various OS functions used in Linux / Ubuntu