
Kashti, Tal - Shrigonda, Dist-Ahmednagar, Maharashtra - 414 701

Faculty of Engineering

Approved by AICTE, MS (New-Int)-Engg./2009/09, Dt. 15/06/09, Affiliated to Savitribai Phule Pune University

Savitribai Phule Pune University Fourth Year of Computer Engineering (2019 Course)			
41024	1: Design and Analys	sis of A	lgorithms
Teaching Scheme:	Credit		Examination Scheme:
TH: 03 Hours/Week	03		In-Sem (Paper): 30 Marks
			End-Sem (Paper): 70 Marks
Prerequisites Courses:DiscreteMathematics(210241),Fundamentals of DataStructures(210242), Data Structures and Algorithms(210252), Theory of Computation (310242)			
Companion Course: Laboratory Practice III (410246)			
Course Outcomes:			
On completion of the course, student will be able to-			
CO1: Formulate the problem			
CO2: Analyze the asymptotic performance of algorithms			
CO3: Decide and apply algorithmic strategies to solve given problem			
CO4: Find optimal sol	ution by applying various	methods	s
CO5: Analyze and Apply Scheduling and Sorting Algorithms.		ithms.	
CO6: Solve problems for multi-core or distributed or concurrent environments		current environments	

Savitribai Phule Pune University Fourth Year of Computer Engineering (2019 Course)		
	410242: Machine I	
Teaching Scheme: TH: 03 Hours/Week	Credit 03	Examination Scheme: In-Sem (Paper): 30 Marks End-Sem (Paper): 70 Marks
Prerequisite Courses: Data Sci Companion Course: Laborator Course Outcomes:	<u> </u>	
On completion of the course, st CO1: Identify the needs an CO2: Apply various data learning algorithms.	d challenges of machine pre-processing techniq	learning for real time applications. ues to simplify and speed up machine
applications.	of multi-class classifier a	chine learning algorithms forreal time nd measure its performance. orithms.
CO6 : Design a neural netw	vork for solving engineer	ng problems.

Kashti, Tal - Shrigonda, Dist-Ahmednagar, Maharashtra - 414 701

Faculty of Engineering

Approved by AICTE, MS (New-Int)-Engg./2009/09, Dt. 15/06/09, Affiliated to Savitribai Phule Pune University

Savitribai Phule Pune University

Fourth Year of Computer Engineering (2019 Course) 410243: Blockchain Technology

Teaching Scheme: TH: 03 Hours/Week	Credit 03	Examination Scheme: In-Sem (Paper): 30 Marks End-Sem (Paper): 70 Marks

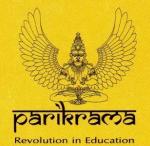
Prerequisite Courses: Computer Networks and Security(310244) **Companion Course:** Laboratory Practice III(410246)

Course Outcomes:

On completion of the course, student will be able to-

- CO1: Interpret the fundamentals and basic concepts in Blockchain
- CO2: Compare the working of different blockchain platforms.
- **CO3**: Use Crypto wallet for cryptocurrency based transactions.
- CO4: Analyze the importance of blockchain in finding the solution to the real-world problems.
- CO5: Illustrate the Ethereum public block chain platform
- **CO6**: Identify relative application where block chain technology can be effectively usedand implemented.

Savitribai Phule Pune University			
Fourth Year	Fourth Year of Computer Engineering (2019 Course)		
	Elective III		
410244(C): Cyber Security and Digital Forensics			
Teaching Scheme:	Credit Examination Scheme:		
TH: 03 Hours/Week	03	In-Sem (Paper): 30 Marks	
End-Sem (Paper): 70 Marks			
Prerequisite Courses: Computer Networks and Security(310244),			
Information Security(310254(A))			
Companion Course: 410246: Laboratory Practice IV			
Course Outcomes: At the end of the course, the student should be able to:			
CO1: Analyze threats in order to protect or defend it in cyberspace from cyber-attacks.			
CO2: Build appropriate security solutions against cyber-attacks.			
CO3: Underline the need of digital forensic and role of digital evidences.			
CO4: Explain rules and types of evidence collection			
CO5: Analyze, validate and process crime scenes			
CO6 : Identify the methods to generate legal evidence and supporting investigation reports.			


Kashti, Tal - Shrigonda, Dist-Ahmednagar, Maharashtra - 414 701

Faculty of Engineering

Approved by AICTE, MS (New-Int)-Engg./2009/09, Dt. 15/06/09, Affiliated to Savitribai Phule Pune University

Sa	avitribai Phule Pune	University
Fourth Year	of Computer Engine	eering (2019 Course)
	Elective IV	
410245 (D):	Software Testing an	d Quality Assurance
Teaching Scheme: Examination Scheme:		Examination Scheme:
TH: 03 Hours/Week	03	In-Sem (Paper): 30 Marks
	05	End-Sem (Paper): 70 Marks
Prerequisite Courses: Software	e Engineering (210253), S	Software Project Management(310245(D))
Companion Course: Lab Prac	ctice IV	
Course Outcomes:		
On completion of the course, st	udent will be able to-	
CO1: Describe fundament	al concepts in software te	sting such as manual testing, automation
testing and software	quality assurance.	
CO2: Design and Develop operations.	project test plan, design t	test cases, test data, and conduct test
CO3: Apply recent automa	ation tool for various softv	ware testing for testing software.
	roaches of quality manage	ment, assurance, and quality standard to
software system.		

CO6: Apply tools necessary for efficient testing framework.

Kashti, Tal - Shrigonda, Dist-Ahmednagar, Maharashtra - 414 701

Faculty of Engineering

Approved by AICTE, MS (New-Int)-Engg./2009/09, Dt. 15/06/09, Affiliated to Savitribai Phule Pune University

SEMESTER VIII

Savitribai Phule Pune University Fourth Year of Computer Engineering (2019 Course)			
410250: High Performance Computing			
Teaching Scheme:	Credit Examination Scheme:		
TH: 3 Hours/Week	3	In-Sem (Paper): 30 Marks	
	End-Sem (Paper): 70 Marks		
Prerequisites Courses: -Microprocessor (210254),			
Principles of ProgrammingLanguages(210255),			
Computer Networks and Security(310244)			
Companion Course: Laboratory Practice V(410254)			
Course Outcomes:			
CO1: Understand various Parallel Paradigm			
CO2: Design and Develop an efficient parallel algorithm to solve given problem			
CO3: Illustrate data communication operations on various parallel architecture			
CO4: Analyze and measure performance of modern parallel computing systems			
CO5: Apply CUDA architecture for parallel programming			
CO6: Analyze the performance of HPC applications			

Savitribai Phule Pune University Fourth Year of Computer Engineering (2019 Course)		
	410251: Deep Learning	<u>.</u>
Teaching Scheme:	Credit	Examination Scheme: In-Sem (Paper): 30 Marks
TH: 03 Hours/Week	03	End-Sem (Paper): 70 Marks
Prerequisite Courses: Machi	ne Learning (410242)	
Companion Course: Laborat	ory Practice V(410254)	
Course Outcomes:		
On completion of the course,	student will be able to-	
CO1: Understand the basic	s of Deep Learning and apply t	he tools to implement deep
learning application	ns	
CO2: Evaluate the perform	ance of deep learning models (e.g.,	with respect to the bias-variance trade-
off, overfitting and u	nderfitting, estimation of test error).	
CO3: To apply the techni	ique of Convolution (CNN) and	Recurrent Neural Network (RNN)
for implementing I	Deep Learning models	
CO4: To implement and	apply deep generative models.	
	y on-policy reinforcement learnir	ng algorithms
CO6:To Understand Rein	forcement Learning Process	

स्लब्ध के बिर्म के बिरम के बारम के बारम के बिरम के बिरम के बारम के बिरम के बाद के बारम क बारम के बारम के

Revolution in Education

Hon. Shri. Babanrao Pachpute Vichardhara Trust's

Kashti, Tal - Shrigonda, Dist-Ahmednagar, Maharashtra - 414 701

Faculty of Engineering

Approved by AICTE, MS (New-Int)-Engg./2009/09, Dt. 15/06/09, Affiliated to Savitribai Phule Pune University

Savitribai Phule Pune University

Fourth Year of Computer Engineering (2019 Course)

Elective V 410252(A): Natural Language Processing

Teaching Scheme:	Credit	Examination Scheme:
		In-Sem (Paper): 30 Marks
TH: 03 Hours/Week	03	End-Sem (Paper): 70 Marks
Drong quigita Courses Digeret	Mathematics (210241)	Theory of Computation (210242)

Prerequisite Courses: Discrete Mathematics (210241), Theory of Computation (310242), Data Science and Big Data Analytics (310251)
Companion Course: Laboratory Practice VI(410255)

Course Outcomes:

On completion of the course, student will be able to-

CO1: Describe the fundamental concepts of NLP, challenges and issues in NLP

CO2: Analyze Natural languages morphologically, syntactical and semantically OR

Describe the concepts of morphology, syntax, semantics of natural language

CO3: Illustrate various language modelling techniques

CO4: Integrate the NLP techniques for the information retrieval task

CO5: Demonstrate the use of NLP tools and techniques for text-based processing of natural languages

CO6: Develop real world NLP applications

	Savitribai Phulo	e Pune University
Fourth Year of Computer Engineering (2019 Course)		
Elective VI		
410253(C): Business Intelligence		
TeachingScheme:	Credit Examination Scheme:	
TH: 03	03In-Sem (Paper) : 30 MarksEnd-Sem (Paper): 70 Marks	
Hours/Week		
Prerequisites Courses: Database Management System(310241), Data Science & Big data		
Analytics(310251), Machine Learning (410242)		
Companion Course: Laboratory Practice VI(410256)		
Course Outcomes: On completion of this course, the students will be able to		
CO1: Differentiate the concepts of Decision Support System & Business Intelligence		
CO2: Use Data Warehouse & Business Architecture to design a BI system.		
CO2: Use Data War	chouse & Dusiness Architee	and to design a DI system.
CO2: Use Data Ward CO3: Build graphica		ture to design a Di system.

CO5: Implement machine learning algorithms as per business needs

CO6: Identify role of BI in marketing, logistics, and finance and telecommunication sector